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Summary. Selection indices can be used to predict one 
trait from information available on several traits in order 
to improve the prediction accuracy. Plant or animal 
breeders are interested in selecting only the best individ- 
uals, and need to compare the efficiency of different trait 
combinations in order to choose the index ensuring the 
best prediction quality for individual values. As the usual 
tools for index evaluation do not remain unbiased in all 
cases, we propose a robust way of evaluation by means of 
an estimator of the mean-square error of prediction 
(EMSEP). This estimator remains valid even when 
parameters are not known, as usually assumed, but are 
estimated. EMSEP is applied to the choice of an indirect 
multitrait selection index at the F 5 generation of a classi- 
cal breeding scheme for soybeans. Best predictions for 
precocity are obtained by means of indices using only 
part of the available information. 
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Introduction 

Plant or animal breeders are interested in obtaining the 
most accurate possible predictions of genotypic values, in 
order to select the best individuals. Frequently, various 
observations contain information concerning the individ- 
ual to be evaluated. We will consider the problem of 
predicting a single trait. The use of selection index allows 
use of more information than only the phenotypic obser- 
vation of the trait to be predicted. Observations on genet- 
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ically correlated traits, observations on genetically corre- 
lated individuals or individuals in the same environment 
can also be used. This potential information is very often 
unbalanced, due to either experimental disequilibrium or 
selection between two sets of genetically correlated indi- 
viduals. 

Some statistical methods allow construction of in- 
dices using all available information, regardless of the 
experimental or genetic conditions. They were first devel- 
oped for animal breeding, and have been generalized as 
classical selection tools. Mixed models should fit nearly 
all variables (Henderson 1973) and are commonly used in 
animal breeding (Quaas and Pollack 1980). Henderson 
(1963, 1986) developed a linear index, the "best linear 
unbiased predictor" (BLUP), which should give the most 
accurate prediction in any case. Gianola (1986) has 
shown that under multivariate normality, BLUP, allow- 
ing for heterogeneous variances, maximizes expected ge- 
netic progress. When selection has occurred inside the 
observation set, Henderson (1975), Thompson (1979), 
and Goffinet (1983, 1987) have shown that variance com- 
ponents estimated by maximizing the likelihood (ML) are 
the only ones that lead to good prediction. 

Sometimes a lot of information is available and, espe- 
cially in plant breeding, one faces the question of the 
choice of the traits, among all the potential information, 
that should be used. This question is set in terms of 
prediction quality and expected genetic gain, but one can 
never ignore the cost of additional observations. To pre- 
dict one single trait, plant and animal breeders look for 
the best overall selection strategy: direct or indirect selec- 
tion, single or multitrait selection. 

First, we will see how classical tools for evaluating a 
selection strategy fail to be reliable most of the time. The 
aim of this paper is to propose a robust and original 
method for comparing the quality of different selection 
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indices by means of estimation of the mean-square error 
of prediction (MSEP). We will then see how the estimated 
mean-square error of prediction (EMSEP) can be a ro- 
bust guide in choice of a prediction strategy in various 
simulated situations. Finally, EMSEP will be applied to 
the choice of predictive traits to be included in an indirect 
multitrait selection index to be used at one stage of a 
classical soybean breeding scheme. 

Evaluation of prediction quality 

Interest in evaluating prediction quality 

Various sources of information are available to predict 
the value of one single trait, and a selection index can be 
constructed using all of them. Often the trait of interest is 
observed, but associated traits observed on the same indi- 
vidual could be included with it in a selection index to 
better predict it. The same trait observed on other indi- 
viduals, either genetically correlated or environmentally 
correlated, could bring additional information, Some- 
times the phenotypic observation of the trait to be pre- 
dicted is unavailable, as in the situation described in the 
following section. 

Many prediction strategies can be used to construct 
an index. The observed variation could be modelled in 
different ways, e.g., fixed or random effects, statistical or 
genetical decomposition. In the same way, variance com- 
ponents could be estimated at different levels. For exam- 
ple, when studying progeny of two crosses or two popu- 
lations, separate variance matrices could be estimated or 
they may be pooled. 

Because of the wealth of potential information that 
could be exploited by different techniques, choice of 
which information to use should be made based on selec- 
tion and prediction goals as well as on experimental or 
economical constraints. The most familiar objective is to 
maximize the expectation of the genetic values of retained 
individuals classed according to their index value. Be- 
sides this selection objective, prediction accuracy is gen- 
erally of interest: the index value, ~i, should be as close 
as possible to the real genetic value, Gz. 

Classical evaluation tools and their limitations 

The choice of a strategy is achieved by choosing the best 
index, Gf, for selection (maximizing the expected genetic 
gain) and for prediction [minimizing the mean-square 
error of prediction E(GI-G~)2: MSEP]. Henderson 
(1963), Gallais (1973), and Wricke and Weber (1986) sug- 
gested the use of the prediction coefficient R2O , which 
proceeds from MSEP. R2O is the linear correlation coeffi- 
cient between G~ and G~, and measures the index predic- 
tion quality. Classical formulas can be used to calculate 
these values, which are not indepent from one another. 

Under known distributions, Goffinet (1983) has shown 
that the best index for prediction maximizes genetic pro- 
gress. With such tools it is then possible to choose a 
genetically and economically suitable strategy. 

Statistical methods allow one to make the most accu- 
rate predictions in almost all situations, using all kinds of 
information. Many authors (e.g., Gjedrem 1967; Gallais 
1973) have shown that the more information you use, the 
better the prediction you get in terms of expected genetic 
gain. But one can rightly wonder whether multiplying 
predictive variables, or taking account of weakly corre- 
lated traits or individuals would not decrease the predic- 
tion accuracy. Moreover, prediction strategies require 
some strong assumptions, such as multivariate normality 
and known variance components. Discrepancies in these 
hypotheses are currently observed; for example, variance 
components are usually not known but only estimated. 
Harris (1964) and Sales and Hill (1976) studied the effect 
of errors in parameter estimates on efficiency of selection 
indices. Such errors lead to an over-prediction of expect- 
ed genetic gain and to a loss of efficiency of the index. 
Sales and Hill (1976) considered the analogy with the 
multiple regression problem and searched for a rule on 
how to make a decision regarding the amount of informa- 
tion to be included in a selection index, i.e., a tool for 
index comparison. But they maintain the assumption of 
multinormality of the genetic values. The validity of the 
results is very sensitive to this assumption, especially 
when selection has occurred. It is therefore interesting to 
look for a robust criterion. 

Estimated mean-square error o f  prediction: E M S E P  

As the choice of the best selection strategy is of general 
interest, we have looked for a robust way to compare two 
indices without making any strong assumptions. We pro- 
pose an unbiased estimation of MSEP that we will call 
EMSEP. We shall study two different situations. 

Situation 1. In this case we want to select individuals 
i for their value Gr with the observation set Y~: 
{y/1 . . . . .  y/k . . . . .  y K} assuming the simple model: 

Y, = Gi + E ~ 

with: Gi: {Gi  l . ,  G~ . . . .  , G~} and Ei: 1 k , . .  {E~ . . . . .  E~ . . . . .  
Ef  }. E~ is a random array whose probability distribution 
is not dependent on the individual i, with null expecta- 
tion, and a variance-covariance matrix ~ with generic 
term {y~k' }. This matrix is assumed to be known or esti- 
mated by an unbiased estimator, ~e, with generic term 
{f~k'} obtained, e.g., by means of replications or check 
plots. Ei effects are assumed to be independent. 

Note: the following development is easily generalizable 
when the selection goal is a linear combination of G~ k. 



We look for predictors @ of Gi 1 having the form: 

= + f  b, 

- ,  . ~K y [ - i ]  where: ~ :  {c~},.. ~ , . .  , , }, represents all the in- 
formation except Y~, and f is any function. 

This very general form contains classical BLUP pre- 
dictors (Henderson 1973), where c~ are functions of 
parameters that characterize populations subject to selec- 
tion. If c~ are fixed or independent from Y~, we show in 
Appendix 1 that E M S E P  i as defined below, is an unbi- 
ased estimator of E ( @ -  @)2: 

K 
= E M S E P  i ( Y / 1 - - g i : t ) 2 - - ~ l + 2  ~ 0~i 

k = l  

We will test the overall quality of a selection index by 
computing: 

N 

E M S E P  = ~ E M S E P j N .  
i 1 

In actual practice, c~ are frequently functions of the whole 
set of observations, containing Y/(variance components). 
It is then possible to get a good MSEP estimator, using 
cross-validation, i.e., computing each cq on the sample set 
y[- iJ. 

Situation 2: We get a sample y of individuals i=  1 . . . . .  N 
on which the array Y~ has been measured according to the 
model described in situation 1. In this case the term 
"sample" means that G~ are independent random vari- 
ables with the same probability distribution. This was not 
required in situation 1. Moreover, E~ is supposed to be 
independent from other random variables, such as when 
the K variable is measured in other places, other years or, 
more generally speaking, under other experimental con- 
ditions. 
Let us note: 

V -KI: { V , - . . ,  V ' - I }  - 

We will now consider that the first K - 1  variables are 
measured on a new individual, N + 1, from the same pop- 
ulation, that is, vE-zq The joint probability distribution ~ N +  i " 

I - K ]  of (Y}+I , G~+~) is assumed to be identical to the joint 
probability distribution of(Y~ ~-K3, G/~) for i =  1, . . . ,  N. We 
are then looking for the prediction accuracy of G~+ ~ by 
G~+ 1, when this predictor has the form: 

V [  - K ]  .3- J GNK+I  ~ ~ ~ N + I  ~ k  ~ �9 

As the N + 1 individuals come from the same population, 
the result of Appendix 1 indicates that each quantity, 

--7e , is an unbiased estimator of E(G~+ I 
--~+i) 2, when ~ and /z are independent from the y 
sample. It becomes then natural to use the estimator: 

1 N 
EMSEPN+ ~ = N ,~1 { (Y~K-G()z-~eKK} . 

263 

When c~ and/~ are obtained from the same observation 
set, it is possible, as for situation 1, to proceed by cross- 
validation, i.e., computing e and # on the sample yt-q and 
using these estimates to calculate G~. But this procedure 
can be very expensive, so we propose to use the estimator, 
EMSEP~+ 1, which corrects partially for the fact that c~ 
and/~ are estimated from the same sample: 

EMSEP*+ 1 = EMSEPN+ 1 + 2 K  ~Ker / g  . 

Appendix 2 shows that this estimator fits well for situa- 
tions where dK is the BLUP in which parameter values 
are replaced by classical estimators from well-balanced 
situations. It is interesting to note the connection with the 
multiple linear regression problem. For  this problem, one 
can use the Cp derived by Mallows (1973), to choose the 
number of variables to be used in the regression function. 
It is easily seen that the formula for Cp looks like the 
formula for EMSEPff~+I. 

Use o f  E M S E P :  an example on simulated data 

E M S E P  as an evaluation tool. Plantevin-Bouchez (1988) 
first evaluated EMSEP on simulated data, when all as- 
sumptions required by the prediction strategy were true, 
in a case similar to situation 1. Under these conditions, 
the usual tools such as MSEP and expected gain were 
unbiased, and necessarily more efficient than a robust 
estimator such as EMSEP.  However, Plantevin-Bouchez 
(1988) verified in various genetic situations that EMSEP 
is unbiased in spite of a rather large sampling variance. 

A reliable way to choose the best index under no 
strong assumptions can be achieved by minimizing 
EMSEP.  A few arguments apply to that technique. It has 
been proven (Goffinet 1983) that the best prediction for 
MSEP is also the one ensuring the most genetic gain. 
This property is verified only if it is possible to attain 
optimality, i.e., to use the expectations of the genetic 
value conditional to the observations. But, if one index is 
better than another for the prediction, it can be worse for 
the selection. In particular, one should not conclude that 
the selection index I is poor  from the fact that the predic- 
tion accuracy E M S E P  (I) is poor. Because to select using 
I or ~I is equivalent (for ~ > 0), one should consider I as 
poor  only if inf~ E M S E P  (c~I) is poor. Estimating parame- 
ters on the observation set used for constructing the index 
is similar to optimizing ~. In such a case, minimizing 
EMSEP should be a reliable way of pointing out the best 
index for prediction and selection. 

In the following we will limit discussion to applica- 
tions described by situation 2. The aim is to predict indi- 
vidual values for one variable by means of different ob- 
served variables, when parameters have been estimated 
from individuals of the same population. 

E M S E P  for indirect multitrait selection index obtained on 
simuIateddata. A simulation study has been chosen as the 
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Table 1. Genetic parameter for the simulations, with y~ :=  t.0 and 7~ k' =0.0 when k C k '  

No. of variables K= 5 

Predictive variables 1 2 3 

K=9 

4 t 2 3 4 5 6 7 8 

Genotypic covariances with variable K 0.6 
Genotypic variance-covariance matrix: 1.0 
2 G ( k - l ,  k - l )  

0.3 0.2 0.1 0.2 0.5 0.3 0.6 0.3 0.2 0.3 0.4 
0.t 0.2 0.1 1.0 0.1 0.2 0.3 0.4 0.2 0.3 0.4 

1.0 0.1 0.2 0.3 0.t 0.2 0.3 
1.0 0.4 0.5 1.0 0.2 0.3 0.2 0.3 0.2 

1 . 0  0.2 0.4 0.2 0.3 
1.0 0.6 1.0 0.2 0.3 0.5 

1.0 0.1 0.3 
1.0 1.0 0.3 

1.0 

Table 2. Mean number of predictive variables in the best index, MSEP, and observed genetic gain for different simulated observation 
sets (N is the number of individuals, 7~k is environmental variance, ** is significant at t % probability level) for K= 5 variables 

N 7~ k Mean no. MSEP Genetic gain 
of predictive 
variables Best index Full index Difference Best index Full index Difference 

20 0.5 2.0 1.477 1.488 NS 2.328 2.416 NS 
t.0 1.6 2.123 2./84 ** 1.691 1.710 NS 
1.5 1.4 2.718 2.847 ** 1.335 1.272 NS 

60 0.5 2.4 1.285 1.286 NS 9.878 9.926 NS 
1.0 2.0 1.883 1.887 NS 7.817 7.897 NS 
1.5 1.7 2.450 2.460 ** 6.373 6.422 NS 

simplest way to validate the efficiency of E M S E P  for 
choosing, from among many combinat ions of predictive 
variables, the best index for the variable to be predicted. 
In order to decrease computa t ion  time, da ta  has been 
simulated according to a simple balanced situation. 

F rom a mul t inormal  probabi l i ty  distribution, we 
draw the observations array Y/: {Yi 1 . . . . .  y/k . . . . .  Yi ~ } for 
i =  1 . . . . .  N according to the simple model:  

~ = c~ + E~ 

for various genetical and environmental  situations 
(Table 1). In this model, the E f  are independent  from 
other environmental  values E~. The phenotypic  covari- 
ance is then equal to the genotypic one. I t  is then possible, 
with the phenotypical  variance-covariance matr ix Xp 
estimated from Y~, to predict the C~ by means of the 
observed values Yi ~-K1 for all possible combinat ions of 1 
to K -  1 predictive variables. The best index is selected as 
the combinat ion that  minimizes EMSEP* computed on 
the N G~ values. 

In a second step, a new sample Y~ is drawn for 
i = N + 1, . . . ,  2N. G~ are then estimated by two different 
indices: (i) the best index calculated in step 1, and (it) the 
complete index using the K - 1  predictive variables with 
parameters  estimated from step 1. MSEP  and genetic 
gain (for a selection rate of 30%) are computed  for both  
indices. This second step is repeated 20 times, and the 

comparison of indices is based on mean values of M S E P  
and genetic gain. Tables 2 and 3 show mean results ob- 
tained on 300 simulations for different values of N, K and 

Z E �9 
As one would expect, the best index according to 

EMSEP* ensures better predict ion accuracy than the 
index using all the variables. This decrease of MSEP  is 
observed in all simulated cases, and the MSEP difference 
is significant in most cases, especially when using K = 9 
variables. 

As the environmental  part  of total  variance increases, 
the accuracy of estimating 2 G decreases, bringing about  
a decrease in predict ion quality for ~ .  The MSEP differ- 
ence between the indices grows and, consequently, in- 
creases the interest in an index using fewer predictive 
variables. 

When the individual  number  N is changed from 20 to 
60, parameter  est imation is more precise, consequently 
decreasing MSEP and minimizing the difference in pre- 
diction accuracy between the two types of indices. 

On the other hand, the index choosen by means of 
EMSEP* rarely leads to more genetic gain and, in a few 
cases (K = 9, N = 60), to significantly smaller gain than 
the one obtained by means of the complete index; never- 
theless, this decrease in genetic gain remains small. It  is 
impor tant  to mention that these simulations were for a 
balanced situation that  is quite favorable to classical cal- 
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Table 3. Mean number of predictive variables in the best index, MSEP, and observed genetic gain for different simulated observation 
sets (N is number of individuals, 7e ~k is environmental variance, ** is significant at 1% probability ievel) for K= 9 variables 

kk N ~/E Mean no. MSEP Genetic gain 
of predicitve 
variables Best index Fuli index Difference Best index Full index Difference 

20 0.5 3.5 1.750 t.889 ** 2.498 2.469 NS 
1.0 2.7 2.538 2.891 ** 1.755 1.741 NS 
1.5 2.3 3.300 3.849 ** 1.315 1.367 NS 

60 0.5 4.3 1.241 1.240 NS 11.151 11.320 ** 
1.0 3.5 1.888 1.899 ** 8.927 9.106 ** 
1.5 3.0 2.500 2.528 ** 7.186 7.463 ** 

culat ion of MSEP.  In such cases, the E M S E P  correction 
plays a very impor tan t  part,  and the observed decrease in 
genetic gain let us think that  this correction may  be im- 
proved. It would be interesting to be able to unders tand 
why the index choice based on E M E P *  does not  lead to 
the intended increase in genetic gain. 

However,  the main interest for finding the best index 
becomes obvious. In  every case an index including fewer 
predictive variables than the complete one is pointed out 
by EMSEP*.  Such an economy of variables always leads 
to better predict ion quality, and rarely to a significant 
decrease in genetic gain. As potent ia l  est imation prob-  
lems for parameters  become more impor tan t  (high v~k or 
small N), EMSEP*  leads to an even smaller number  of 
predictive variables. On the other hand, as estimations 
are more and more likely to be close to real parameter  
values, it becomes more and more interesting to use all 
the available information for predict ion of individual  
genetic values. Nevertheless, regardless of the situation, 
the EMSEP*  diagnosis has allowed us to decrease signif- 
icantly the number  of variables going, in one case (K = 5, 
Table 2), from four to one or two variables, in the other 
case (K = 9, Table 3), from eight to about  three variables. 

Choice of an indirect multitrait selection index 
for soybean improvement, by means of EMSEP 

Selection among F 5 single plants  derived by S S D  

Single seed descent (SSD) is a strain fixing method that  is 
commonly  used for soybean improvement  (Fehr 1978). 
Homozygos i ty  is quickly increased without  any selection 
up to the F 5 o r  F 6 generation, maintaining in this way all 
of the genetic variation. However,  going from this fixa- 
tion stage to the selection stage remains a real problem 
for soybean breeders. How to make a first choice among 
the large number  of strains on the basis of observat ion of 
one single F 5 or F 6 plant  by strain? The two impor tan t  
variables to be predicted are yield and precocity of fixed 
strains but, to simplify, we consider only the predict ion of 
precocity. In order to do that, it is possible to look for 
good correlations between the variable to be predicted 

and one variabte or a combinat ion  of variables that  could 
be observed on single F 5 plants, constructing in this way 
a selection index allowing an early efficient choice. 

Progenies from three crosses between soybean vari- 
eties of indeterminate type have been brought  to F s by 
SSD. Nine variables have been observed on 100 F plants 
from each cross: product ion variables; total  number  of 
pods (NPT), number  of pods per ramification (NPR), 
number  of seeds (NS), total  seed yield (YD), total  dry 
mat ter  (DM), and developmental  variables; number  of 
ramifications (RAM), number  of nodes (NO), plant  height 
(HT), matur i ty  date (R8). Strains from 30 F s plants select- 
ed among the 3[00 in each cross were observed for precoc- 
ity in agronomic trials with replications of F 7 and F s , in 
2 successive years. 

Estimation and prediction methods 

The observations Y/~ of k variables (k = 1 . . . . .  9) on F 5 
plants follow a mul t inormal  probabi l i ty  distr ibution,  and 
are described by the following mixed model, for 
i =  1 . . . . .  100 individuals and j =  1 . . . .  3 crosses: 

Observat ions Yijh( from F v (h = 7) or F8 (h = 8) strains, for 
the variable K to be predicted (precocity), made in an 
incomplete block design, are described by the following 
model:  

= + + 

where the #f are the fixed effect related to t h e j  cross, the 
B~ '~ are the random effect related to the I block (trial), the 
G~j are the genetic r andom effects related to the i individ- 
ual from the j cross, and the E are the residual effects. 

We assume that  E i j = ( E  ~ . . . . .  Ei~), G~--(Gllj, . . .  , G~ ~ , 
GhK~ hK BI, K ~j ~, Eij~, and are, respectively, mul t inormal ly  dis- 
t r ibuted and independent  of all the other r andom vari- 
ables. 

Note  that  genetic variances among the strains of the 
three different croses are asumed to be homogeneous,  and 
a single variance-covariance matr ix  has been est imated 
for all strains. 
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The predictions of F 7 using Fs,  and of F 8 using F 5 
have been considered independently.  In each case, 
parameters  have been estimated by the maximum likeli- 
hood  method, using the iterative procedure proposed  by 
Rao and Kleffe (1980) on the whole set of data, respective- 
ly, F 5 and F 7, or F 5 and F a . The maximum likel ihood 
est imators based on all the information are, in fact, the 
only ones that  lead to good predictors  when selection has 
occurred in the observed popula t ion  (Thompson 1979). 
We need to assume that  selection has occurred only in the 

F 5 generation. 
Fo r  h = 7  (F7), and h = 8  (Fs), we want  to predict 

# h ~ + @  in each cross j,  for i = 1  . . . . .  J00 strains. The 
indices that  have been used are based on the Best Linear 
Unbiased Predictor  (BLUP) (Henderson 1963), for all 
possible combinat ions of 1 - 9  predictive variables of F 5 , 
y[-K], constructed with est imated parameters.  

Index evaluation 

As parameters  are not known but  estimated, classical 
calculation formulas for predict ion accuracy, MSEP,  and 
genetic gain have no reason for being unbiased. In such 
cases, EMSEP* is the only unbiased comparison criteri- 
on. Indices have, therefore, been compared  by means of 
their EMSEP* values to determine the best index for 
each number  of variables. This has been achieved by 
looking for the best univariable index, combining then 
the variable that  leads to the best bivariable index, and so 
on, up to nine variables. It then becomes possible to 
choose the best combinat ion of predictive variables. 

It should be noted that  the assumptions of normality,  
used to build the estimators,  are not  needed for the unbi- 
asedness of the EMSEP* value. 

Results 

Figures 1 and 2 give MSEP and EMSEP* values for 
combinat ions of 1 - 9  observed F 5 variables, for the pre- 
diction of F 7 and F 8 precocity. The order of in t roduct ion 
of F 5 variables in best indices is similar for both  experi- 
mental  years, and brings out the importance of two pre- 
dictive variables: plant  height (HT) and matur i ty  date 
(R8). However,  as shown in Table 4 it is not  the same 
index that  minimizes EMSEP* in both cases: for F 7 the 
best predict ion is based solely on HT, and for F s it is a 
six-variable index that  leads to the best predict ion accu- 
racy. F 7 and F 8 were grown under very contrast ing cli- 
matic conditions, which could explain the difference in 
best indices. A bivariate index combining HT and R8 
should be rather easy to obtain from a practical  point  of 
view, and should provide good predict ion quality in all 

years. 

Interest for EMSEP 

In all studied cases, E M S E P  enables us to select an index 
with a reduced number  of predictive variables (Figs. I 

0.68 

g o.67 

0.66 

0.65 

W 0.64 

0.63 
g 
~- 0.62 

~ 0.61 

/ /  

I 

.... EMSEMP* 

- - M S E P  

I I I i I 

2 4 6 8 10 

Number of predictive variables 

Fig. 1. F v precocity prediction: MSEP and EMSEP* values for 
best indices (order of introduction of predictive variables: 1-HT, 
2-R8, 3-NPT, 4-NO, 5-NS, 6-RAM, 7-YD, 8-DM, 9-NPR) 
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Fig. 2. F 8 precocity prediction: MSEP and EMSEP* values for 
best indices (order of introduction of predictive variables: 1-R8, 
2-HT, 3-NS, 4-YD, 5-NPT, 6-DM, 7-RAM, 8-NO, 9-NPR) 

Table4. Precocity prediction: EMSEP* for some interesting 
combinations of F s variables 

Index Variable EMSEP* 
n o ,  

F7 F8 

Complete index 9 0.677 0.420 
Best F 7 index 1 0.655 0.557 
HT 
Best F s index 6 0.660 0.407 
R8-HT-NS-YD-NPT-DM 
Intermediate index 2 0.656 0.436 
HT-R8 

and 2). We notice from these figures that  values for 
E M S E P  and MSEP are often quite different, and that  
MSEP  always leads to use of all the available informa- 

tion. 
E M S E P  appears  to be a robust  and original tool  for 

choosing variables to be used in an index. I t  is obvious 
that  adding predictive variables is not  always desirable, 



as it m a y  lead to p rob lems  in es t imat ion  of pa ramete r s  

and to a decrease in pred ic t ion  accuracy.  

However ,  these results apply  only to the s tudied sam- 

ples, and  do no t  resolve comple te ly  the p r o b l e m  of year  

effect. The  use of indica ted  indices for ano the r  sample,  

progenies  f rom other  crosses, e.g., is no t  obvious .  We m a y  

hope  to apply  them to popu la t ions  in which parents  are 

no t  too  different f rom those  s tudied here. In  any case, this 

should  be done  with  care, using new est imates  of var iance  

pa ramete r s  f rom F 5. 

Fi rs t  and  foremost ,  our  a im is to p ropose  E M S E P  as 

a tool  for choos ing  a m o n g  predic t ive  variables  as has 

been requ i red  by Sales and Hill  (1976), this too l  being 

robus t  to discrepancies  in a s sumpt ion  of  no rma l i t y  and 

p a r a m e t e r  estimates.  

Appendix 1 

The following equalities are easy to verify: 

E (C? - Y?)~ = E ((C? - ~?)  - ( Y ? - G ? ) ) 2  

=E(GI~--@)  2 - 2 E ( @ - @ ) ( Y ~ - @ )  

+ E ( Y ? - a i q  ~ 
K 

E(C~-~?)  ~ : E G ~ - Y ? )  ~ - ~ ; ~  + 2  Z ~ f ~ .  
k - 1  

If ( @ - -  Yil) 2 is an unbiased estimator of E ( @ -  Yil) 2, then it is 
possible to get an unbiased estimator of E (@--Gil)2: 

K 

E M S E e , = ( G ~ - - ~ ) ~ - - ~  ~ + 2  Z ~ ~ ~i 7~ �9 
k - 1  

Notice that the validity of this expression does not depend 
on the probability distribution of G{, as all equalities are valid 
conditional on the Gi ~ value, though there is no need for the 
hypothesis of random G~, even if it had played some part in the 
construction of the prediction, Gz~. 

Appendix 2 

Let us suppose there is a true model: 

Yii K = a + b  Y~r-m + e i 

where Var(ei)=7~ does not depend on i. 
Let a and 6" be least-square estimates of a and b. The # and 

coefficients for index (~K are, respectively, # = a and ~ = E when 
the index is the best linear unbiased predictor, and where vari- 
ance-covariance parameters values are replaced by their esti- 
mates from the sample y. In such a situation, we are looking for 
the estimation of RK: 

= E ( G L ~  - ( a  + E Y L  fJ))2 
E ( G f + l _ ( a + b  [-K] 2 = y:~+~ )) + E ( a + ~ y ~ ? : ~ l _ ( a + b  vt-Kh~2 

~ N + I  21 
K K = R 1 + R  2 . 

It is evident that Rf=G--VE.  
For the second part, R~, let us first make the approximation 

that the probability distribution of Y~+~J is the discrete probabil- 
ity distribution taking each Yi t-K1 value with a probability I /N.  
Using the algebraic form of least-square estimates, 8 and ~, it is 
easily demonstrated that R~ = 7~ K / N .  The effect of this approx- 
imation can be measured by calculating the exact value of R~ 
when K = 2  and when y/r- KI is assumed to be normally distribut- 
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ed. This leads to an independent ~(2 ratio, and gives in the end 
R~=(7~K/N)(N/(N-2)) .  The expression R~= G K / N  seems 
then to be good enough for usual sample sizes in plant breeding. 

On the other hand, let us look for the expectancy of: 

N + I  1/ - - r E  J" " 

Linear model theory shows that: 

N - K  
E [,~K] = ~ ~ _ ~E - 

So /~K+2K 7~/N is an unbiased estimator for R K. The expres- 
sion for EMSEP*+ 1 is obtained by replacing 7~ by ~)ffK, which is 
a biased estimator for 7~, but has been shown with simulation to 
be more satisfactory than the use of an unbiased estimator with 
a big sampling variance. 
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